Computational Screening of MOFs for Acetylene Separation
نویسندگان
چکیده
Efficient separation of acetylene (C2H2) from CO2 and CH4 is important to meet the requirement of high-purity acetylene in various industrial applications. Metal organic frameworks (MOFs) are great candidates for adsorption-based C2H2/CO2 and C2H2/CH4 separations due to their unique properties such as wide range of pore sizes and tunable chemistries. Experimental studies on the limited number of MOFs revealed that MOFs offer remarkable C2H2/CO2 and C2H2/CH4 selectivities based on single-component adsorption data. We performed the first large-scale molecular simulation study to investigate separation performances of 174 different MOF structures for C2H2/CO2 and C2H2/CH4 mixtures. Using the results of molecular simulations, several adsorbent performance evaluation metrics, such as selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability were computed for each MOF. Based on these metrics, the best adsorbent candidates were identified for both separations. Results showed that the top three most promising MOF adsorbents exhibit C2H2/CO2 selectivities of 49, 47, 24 and C2H2/CH4 selectivities of 824, 684, 638 at 1 bar, 298 K and these are the highest C2H2 selectivities reported to date in the literature. Structure-performance analysis revealed that the best MOF adsorbents have pore sizes between 4 and 11 Å, surface areas in the range of 600-1,200 m2/g and porosities between 0.4 and 0.6 for selective separation of C2H2 from CO2 and CH4. These results will guide the future studies for the design of new MOFs with high C2H2 separation potentials.
منابع مشابه
High-Throughput Computational Screening of the Metal Organic Framework Database for CH4/H2 Separations
Metal organic frameworks (MOFs) have been considered as one of the most exciting porous materials discovered in the last decade. Large surface areas, high pore volumes, and tailorable pore sizes make MOFs highly promising in a variety of applications, mainly in gas separations. The number of MOFs has been increasing very rapidly, and experimental identification of materials exhibiting high gas ...
متن کاملEthyl acetylene adsorption on the surface of a BN nanotube: A Computational study
Abstract: Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward ethyl acetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethyl acetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si an...
متن کاملHigh-Throughput Molecular Simulations of Metal Organic Frameworks for CO2 Separation: Opportunities and Challenges
Metal organic frameworks (MOFs) have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and c...
متن کاملMetal-organic frameworks with functional pores for recognition of small molecules.
Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to d...
متن کاملHigh-throughput computational screening of metal-organic frameworks.
There is an almost unlimited number of metal-organic frameworks (MOFs). This creates exciting opportunities but also poses a problem: how do we quickly find the best MOFs for a given application? Molecular simulations have advanced sufficiently that many MOF properties - especially structural and gas adsorption properties - can be predicted computationally, and molecular modeling techniques are...
متن کامل